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Abstract: The software defect prediction technique yields result that development teams may examine and further
contribute to industrial results. It finds all the problematic code portions, helps software developers uncover bugs, and
helps them design their testing methods with the help of the model prediction. It is essential to know what percentage of
categories yield the accurate forecast for early detection. Moreover, software-defected data sets are supported and at least
partially recognized due to their huge dimension. Random forests (RF) and artificial neural networks (ANN) are the
machine learning techniques utilized in this research. The forecast for defects is created using historical data. The
outcomes showed that the artificial neural network classifier performed better than the random forest classifier.
Keywords: Machine Learning, Artificial Neural Networks, Random Forests, and Software Defect Prediction.

1. Introduction

Software defect prediction, which searches for potential

weaknesses in software systems before they manifest in
actual software, is a crucial aspect of software engineering.
This proactive approach enhances the program's quality
and saves a significant amount of money and time on
maintenance. Two of the more conventional techniques for
finding errors are manual code reviews and testing, both
of which are usually insufficient given the increasing
complexity of contemporary software systems. Predictive
analytics based on machine learning has so emerged as a
powerful solution to this problem.

Predictive analytics forecasts the future based on historical
data. Models that can estimate the likelihood of errors in
newly developed or updated software modules are built
using defect data and previous software metrics in the
context of software defect prediction. Machine learning
techniques, particularly supervised learning algorithms,
are perfect for this type of work because of their ability to
extract complex patterns and correlations from large
datasets. The difficulties in guaranteeing the dependability
and quality of contemporary software systems have
increased due to their growing complexity and size.
Software flaws jeopardize user confidence and system
security in addition to causing large financial losses. In
order to effectively handle these difficulties, traditional
defect detection techniques which frequently depend on
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manual code reviews and testing are starting to fall short.
As a result, in order to foresee and eliminate problems
early in the development lifecycle, the software
engineering community is increasingly turning to
predictive analytics and machine learning techniques.
Predictive analytics is a proactive method to software
defect control that makes use of statistical models and past
data to estimate future events. It is feasible to find patterns
and correlations in enormous datasets that point to
promise by combining machine learning algorithms.

This study uses multiple machine learning approaches to
examine software failure prediction. We look into the
effectiveness of several algorithms, including supervised
learning techniques like decision trees, support vector
machines, and neural networks, as well as unsupervised
techniques like clustering. Our study uses a large dataset
that contains historical software metrics and defect
reports, providing a strong basis for model validation and
training. The purpose of this study is to demonstrate how
software quality assurance processes could be enhanced
by machine learning. By accurately predicting failures,
developers may maximize testing resources, concentrate
their efforts on high-risk regions, and create software that
is more dependable. In this work, two machine learning
techniques were used to evaluate the software fault
prediction performance. Among the algorithms are
Artificial Neural Networks (ANN) and Random Forests
(RF). The algorithms have been run on a Jupyter
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Notebook. The dataset that was used in this study came
from a repository that was open to the public. The
accuracy of software defect prediction will be evaluated
using the various evaluation metrics. We can choose the
machine learning algorithm to utilize for predictive
analytics in software fault detection based on the
outcomes of these tests. Accuracy, recall, fl-score, and
precision are among the evaluation metrics. The most
suitable machine learning algorithm to use throughout the
prediction phase is the one with the highest accuracy. The
remaining portion of the paper is organized as follows:
Section 2 includes a review of the literature on predictive
analytics for machine learning-based software defect
detection; Section 3 comprises theory and computation;
Section 4 comprises a flowchart and experimental
methodology; Section 5 details the outcomes and a
discussion of the algorithms' performance; Section 6 offers
a conclusion and future directions; and Section 7 includes
references.

2. Literature Survey

An example of the empirical literature review of software
fault prediction models and methods is given in this
section. Below is a synopsis of the in-depth analysis of
multiple methodologies that have been offered by
different researchers. Finding possible future paths in the
defect prediction field which was previously mentioned is
the aim of this review.

“Integrated Approach to Software Defect Prediction” by
Ebubeogu Amarachukwu Felix, and Sai Peck Lee. An
integrated machine learning strategy, based on regression
models built utilizing a set of predictor variables, was
applied in this research. Regression models use multiple
and simple linear regression approaches to estimate the
number of flaws in a software product before testing,
based on these variables. This technique can estimate the
number of defects in a defective program, which sets it
apart from previously proposed prediction models for
binary defect classification. In binary classification, a
program is simply labeled as defective or non-defective
without any estimation of the number of defects.

“A Review on Software Defect Prediction Techniques
Using Product Metrics” by Jayanthi. R, Lilly Florence and
Arti Arya. The volume and complexity of software
systems are currently growing at a very quick speed.
While there are instances where it enhances performance
and yields effective results, there are also instances where
it results in increased testing costs, insignificant results,
subpar quality, or even untrustworthy items. Software
defect prediction is essential to improving software
quality and reducing the cost and duration of software
testing. Traditionally, software metrics have been used to
characterize the complexity and determine how long the
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programming will take. A thorough study is carried out
using software metrics to predict the module's flaws.

Zheng Rong Yang, “A Novel Radial Basis Function Neural
Network for Discriminant Analysis”. This research
presents a new radial basis function neural network for
discriminant analysis. This work, in contrast to many
others, focuses on applying the Bayesian technique to
utilize the weight structure of neural networks using
radial basis functions. It is anticipated that a radial basis
function neural network with a thoroughly investigated
weight structure will perform better. In this paper, the a
priori weight structure of a radial basis function neural
network is studied using the Bayesian method because it
is typically unknown. This study examines two weight
structures: a two-Gaussian structure and a single-Gaussian
structure. To estimate the weights, an expectation-
maximization learning approach is employed.

Huihua Lu, Bojan Cukic &Mark Culp. “Software Defect
Prediction Using Semi-Supervised Learning with
Dimension  Reduction”.  Minimizing  non-essential
assurance costs and achieving high-quality software
products are possible with accurate fault-prone module
detection. The availability of software modules with
known fault content created in a comparable context is
necessary for this kind of quality Modeling. Determining
whether a module is defective or not can be costly. The
fundamental concept of semi-supervised learning is to
augment model training with modules for which the fault
information is not available, and learn from a limited
number of software modules with known fault content. In
this work, we examine how well semi-supervised learning
performs in predicting software defects. The method to
lower the dimensional complexity of software metrics
incorporates multidimensional scaling as a preprocessing
technique. The findings of this study demonstrate that the
semi-supervised learning algorithm.

Jiajing Wu, Chuan Chen, Zibin Zheng & Michael R. Lyu,
“CDS: A Cross-Version Software Defect Prediction Model
with Data Selection” (2021). The benefits of cross-version
defect prediction (CVDP) over within-project and cross-
project defect prediction for real-world applications were
covered in this research. Then, they identified two crucial
problems that could seriously jeopardize the performance
of CVDP models but have rarely been brought up in
earlier research. They then carried out exploratory
investigations to confirm the existence of these problems
and the ways in which they impact CVDP performance.
The authors presented a unique cross-version defect
prediction model with data selection (CDS), where the
defect labels of new and existing files are predicted in
different ways, to address these problems and enhance the
prediction performance of CVDP. Through rigorous
selection and analysis of pertinent data, the data selection
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process seeks to forecast software problems across various
versions.

3. Theory and Calculation

Using machine learning algorithms on historical software
development data, predictive analytics for software defect
prediction looks for patterns that point to the existence of
problems. The main idea is to use historical data to create
models that can forecast the occurrence of errors in the
future, allowing for proactive measures to improve
software quality.

The project’s parts include:
= Preprocessing and Data Acquisition
= Data preparation and feature selection
=  Model building and training
= Model validation and outcome analysis.

Utilizing the training dataset, train the chosen models.
Utilizing the testing dataset and metrics like as accuracy,
precision, recall, F1 score, and AUC-ROC, assess the
models. An illustration of a calculation
Assume we work with a dataset of 10,000 software
modules, each of which has 21 features (e.g., number of
commits, cyclomatic complexity, and lines of code) to
describe it. A binary label in the dataset denotes whether
flaws are present (1) or not (0).

Data Splitting:
» Training set: 70% (7,000 modules)
= Testing ser: 30% (3,000 modules)

Interpreting Results:
= Accuracy= (TP+TN)/(TP+TN+FP+FN)
= Precision = TP/(TP+FP)
= Recall = TP/(TP+FN)
= F-Score = (2 Precision Recall)/ (Precision + Recall)

A thorough knowledge of the model's performance is
provided by its accuracy, precision, recall, F1 score, and
AUC-ROC. High scores for these measures point to a
trustworthy model for software defect prediction.
Predictive analytics employing machine learning
techniques can greatly increase the early detection of
software faults by adhering to this theoretical framework
and computation procedure. This will improve the quality
and reliability of software.

4. Experimental Method

We suggest a productive system that is a part of the
conventional machine learning idea and uses artificial
neural networks and random forests. The model is trained
on a dataset, which reduces execution time and produces
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effective results. One that usually makes use of a
conventional machine algorithm.

Algorithms : Machine learning techniques are utilized to
implement predictive analytics for software defect
identification through the usage of Random Forest (RF)
and Artificial Neural Networks (ANN).

Random Forest: preferred algorithm for machine learning
Random Forest is used for both regression and
classification tasks. Several decision trees are combined in
this ensemble learning technique to produce predictions.
A dense network of decision trees is produced by the
process, and each one is trained using a random subset of
the initial training set's attributes and data. The random
sample reduces overfitting and boosts the durability of the
model.

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting / Averaging

Final Result

Figure. 1 Random Forest

To produce a prediction, the software aggregates each
assumption made by each tree in the forest. In
classification tasks, the most common forecast across all
trees is selected; in regression tasks, the average of all the
forecasts is determined.

Artificial Neural Networks : The connections between
distinct neurons and their relative strengths are how our
brain processes and stores all of the information that it
contains. Neural networks operate on the underlying
principle. Neural networks are fundamentally nothing
more than a collection of interconnected neurons.
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Figure. 2 ANN
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This introduces a thought-provoking idea: A neural
network's structure is unaffected by the task it must do.
We need to gain some understanding of the fundamental
construction of an ANN (artificial neural network) in
order to comprehend that. Three layers of "neurons” can
be used to build the most basic ANN. The three layers are
the input, hidden, and output layers. Data travels from the
input layer to the output layer via the hidden layer, and
then output layer.

Flow Chart: Meeting deadlines and finishing all assigned
work are crucial. The flowchart is one of many project
management tools that are available to assist project
managers in keeping track of their tasks and schedule.
One of the seven fundamental quality tools used in project
management, a flowchart arranges the steps required to
complete a task in the most practical order. This kind of
tool, often known as process maps, shows a sequence of
stages with branching options that represent one or more
inputs and convert them to outputs.

Flowcharts have the advantage of providing an overview
of the actions involved in a project by mapping the
operational details inside the horizontal value chain. This
includes decision points, parallel paths, branching loops,
and the overall processing sequence. Additionally, this
specific tool is highly useful for understanding and
assessing the cost of quality for a certain process. This is
accomplished by evaluating the projected monetary
returns and using the workflow's branching logic.

START

Input Dataset

v

Data processing

+
Split Dataset into
training and testing

No Yes

| Input testing Data I‘i

v

‘ Predicted value

Figure. 3 Flow Chart

5. Result and Discussion

A result is the ultimate outcome of events or actions, either
qualitatively or quantitatively stated. An operational
analysis is performance analysis, which is a collection of
fundamental guantitative  relationships between
performance quantities.
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Table. 1 Metrics

Metrics Definition

Precision is defined as the ratio of
positive examples to the sum of such
actual and false positives

Recall is defined as the ratio of correct
positives to all true negatives and
false negatives

A Weight harmonic average such
recall and precision is known as the F1.
The projected capacity for the model is
higher the closer the F1 score value is
near 1.0.

The number of instances of a class that
truly exist in the dataset constitutes the
number of supports . It does not
differentiate between kinds, it only
improves the performance evaluation
process.

Precision

Recall

F1 Score

Support

Classification Report

recall fl-score

precision

support

8.70 0.68 8.69 3000
0.69 8.71 0.70 3000

accuracy 0.69 6000
macro avg 0.69 6600
weighted avg 0.69 6000

Figure. 4 Classification Report of Random Forest

The Random Forest algorithm achieved an accuracy of
69% in predicting software defects, showcasing its
effectiveness in analyzing and identifying potential issues
within codebases. Its ensemble nature, combining multiple
decision trees, contributes to its robust performance in
handling complex datasets.

precision recall fl-score support
0.87 0.76 0.81 3000

0.79 0.88 0.83 3000

accuracy 0.82 6000
macro avg 0.82 0.82 6600
weighted avg 0.82 0.82 6000

Figure. 5 Classification Report of ANN

An ANN is giving the best accuracy in this investigation,
it means that this specific type of model is performing
exceptionally well compared to other models or
approaches you've tried. Achieving high accuracy
indicates that the ANN is effectively learning patterns in
the data and making accurate predictions or
classifications.

To provide more context, it would be
gloicle
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beneficial to have more information about the particular
project, including the dataset you are using, the goal you
are attempting to complete (such as regression or
classification), the neural network's architecture, and any
training or optimization methods you have employed.

Figure. 6 Comparison graph between RF and ANN

6. Conclusion and Future Scope

Artificial Neural Networks (ANN) and Random Forests (RF)
have both been effectively used for software defect
prediction. RF is appropriate for a variety of datasets since
it frequently offers strong accuracy and robustness against
overfitting. An ANN has the ability to detect complex
patterns in data and adjust effectively to nonlinear
relationships, which may result in good prediction
performance. When choose between ANN and RF for
software defect prediction, take into account the needs of
the task and the particular features of the dataset. The
accuracy of the Random Forest (RF) was 69%. The
accuracy of the Artificial Neural Network (ANN) was
83%. In terms of accuracy, the ANN performed better than
the Random Forest, achieving an accuracy rate of 83% as
opposed to 69%.

This shows that the ANN model performed better in
accurately predicting software defects and identifying the
underlying patterns in the data. When selecting between
the two techniques, it is important to take into account
additional aspects such processing resources, the
interpretability of results, and the particular needs of the
software defect prediction task. Overall, even though
ANN performed better in this scenario than RF did, the
decision between the two should be made after a thorough
analysis of all relevant criteria. This presents a viable
method to improve the dependability and quality of
software. Organizations can proactively identify potential
faults and allocate resources for testing and mitigation
efforts by utilizing sophisticated machine learning
algorithms and historical data.

Teams may identify and fix problems earlier in the
development lifecycle using this proactive strategy, which
lowers the chance that defects will make it into production
and lowers the risks and expenses involved. Furthermore,
by providing stakeholders with insightful knowledge
about software quality patterns, predictive analytics
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facilitates well-informed decision-making and ongoing
improvement projects. Organizations stand to gain from
better software quality, a quicker time to market, and
higher customer satisfaction as long as they continue to
implement ML-driven defect prediction tactics. Compared
to the Random Forest approach, the Artificial Neural
Networks (ANN) algorithm vyields more accuracy.
Potential future projects could involve:

= Exploring advanced ML models like deep learning
and ensemble methods.

= Improving feature engineering and automated feature
selection.

= |ncorporating contextual and temporal analysis for
dynamic environments.

= Developing techniques for uncertainty estimation.
Enhancing model interpretability and explainability.

= |nvestigating cross-project transfer learning for
resource-constrained settings.

= Implementing real-time prediction and monitoring in
live systems.

= Adapting approaches to specific software domains or
methodologies.
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