International Journal of Computational Science and Engineering Research

ISSN: 3107 - 8605 (Online) , http://www.ijcser.com/

Regular Issue , Vol. 1, Issue. 1 ( October — December ), 2024 , Pages: 10 - 14
Received: 10 June 2024 ; Accepted: 27 August 2024 ; Published: 22 October 2024.
Research Paper , https://doi.org/10.63328/IJCSER-V1RI1P3

An Integrated Hybrid Power Supply For Distributed Generation
Applications Fed by Non Conventional Energy Sources

K. Krishna Reddy ¥, S. Hareesh 2

12 Department of EEE, Mother Theresa Institute Of Engineering and Technology (A),Palamaner, INTUA, AP, India ; krishnareddy206@mtieat.org

Abstract: This study introduces an innovative energy management strategy for hybrid power systems. The proposed
system is designed to efficiently regulate power distribution among various energy sources—such as photovoltaic (PV)
panels, wind turbines, and fuel cells—to meet load demands. It utilizes a combination of artificial neural networks (ANN)
and fuzzy logic controllers (FLC) to control power flow. Specifically, the ANN is employed to perform maximum power
point tracking (MPPT) for the different renewable sources connected at the DC link. Both the ANN-based and FLC-based
MPPT techniques were evaluated in a hybrid setup incorporating PV modules, a wind turbine, and a fuel cell, each
connected through DC-DC converters. The model’s performance was tested under various operating conditions to
analyze its dynamic behavior. Results indicate that the hybrid configuration delivers higher power output compared to
using individual sources alone. The system is suitable for both standalone and grid-connected applications. Simulation
results, conducted using MATLAB/Simulink, reveal that the ANN-based MPPT method outperforms the FLC approach
in optimizing power extraction from the PV, wind, and fuel cell systems under DC load conditions.
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1. Introduction

On January 30, 2020, the World Health Organization
(WHO), through its International Health Regulations
Emergency Committee, declared the outbreak of the
novel coronavirus (COVID-19) a "public health
emergency of international concern. In the pursuit of a
sustainable and environmentally responsible energy
future, renewable energy sources have emerged as key
contributors. Among these, solar and wind energy stand
out as highly promising technologies for clean power
generation. Their global adoption has grown more
rapidly than many experts initially projected. However,
the wvariable nature of these renewable resources
introduces challenges related to stability and power
quality, which are less prevalent in traditional power
systems. This dynamic interaction between fluctuating
energy input and demand necessitates effective energy
flow management to ensure system reliability [1], extend
the life of system components (such as fuel cell
membranes), and maintain uninterrupted power
delivery.

To address these challenges, the development and
research into alternative energy systems have been
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significantly motivated. Over the last decade,
technologies like solar photovoltaic (PV) panels and
wind turbines (WT) have gained prominence due to
their abundance, environmental benefits, maturity, and
cost-effectiveness. Additionally, fuel cells (FC) have
been integrated into hybrid systems to meet increasing
energy demands efficiently [2].

While several studies have explored energy
management strategies for hybrid systems, many relied
on conventional control techniques. For example, Wang
and Nehrir proposed strategies for managing energy in
DC-linked wind/PV/FC systems, while Ahmed and
colleagues addressed power fluctuation issues using
ultra-capacitor-supported hybrid systems. Onar et al.
also contributed similar strategies. However, many of
these methods employed linear proportional-integral
(P1) controllers, which have shown limitations in
adapting to rapid environmental changes [3]. Hybrid
renewable energy systems (HRES) present an excellent
opportunity for distributed power generation. Notably,
wind energy systems are experiencing the fastest growth
in installed capacity among all renewable technologies.
These systems are particularly attractive due to their
technological maturity and cost efficiency. Likewise, PV
systems offer high flexibility in scale and are easily
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integrated with DC-DC converters for effective energy
conversion [4].

The method proposed in this study introduces a real-
time energy management strategy governed by a
hierarchical control framework. This system integrates
four energy sources—PV panels, wind turbines, and fuel
cells—at a common DC-link. The block diagram of this
hybrid power setup is shown in Figure 1. PV and wind
systems are emphasized due to their sustainability and
cost-free resource inputs. Using DC-DC converters,
these systems achieve stable output through the
Maximum Power Point Tracking (MPPT) technique [5].

Several MPPT algorithms exist to optimize power
extraction, with the Perturb and Observe (P\&O) method
being commonly employed for its simplicity. Alternative
MPPT strategies have also been developed specifically for
fuel cell systems [6]. Recent studies indicate that
incorporating artificial intelligence (Al), such as fuzzy
logic and neural networks, enables precise control of fuel
cells, maintaining them within high-efficiency operating
zones.
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Figure.1: Energy Conversation Module

This paper presents an adaptive energy management
system that uses fuzzy logic and artificial neural
networks to control power distribution in a stand-alone
hybrid power system. The MPPT approach is applied to
maximize the output from each energy source—PV,
WT, and FC—combined at a shared DC-link, resulting
in a unified and efficient hybrid energy supply [7].

Various techniques have been developed to accurately
estimate the optimal capacity of energy systems, among
which the Perturb and Observe (P&O) method is widely
used for Maximum Power Point Tracking (MPPT) due
to its simplicity and ease of implementation.
Additionally, several alternative MPPT strategies have
been specifically tailored for fuel cell (FC) systems. Prior
research has also demonstrated that artificial
intelligence approaches can effectively manage fuel cell
operation in hybrid vehicles, maintaining performance
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within high-efficiency zones [8]. In light of this, the
present study proposes an adaptive power management
approach for stand-alone hybrid energy systems,
utilizing fuzzy logic and artificial neural networks. The
MPPT technique is implemented to extract maximum
power from photovoltaic (PV) panels, wind turbines
(WT), and fuel cells. All these energy sources are
integrated at a common DC-link, enabling the system to
deliver a stable and combined power output—
effectively forming a robust hybrid power system [9].

2. Related Work

Mathematical Analysis Of Photo-Voltaic Pv, Wind
Turbine And Fuel Cell Systems.

Figure 2 illustrates the equivalent circuit model of a
photovoltaic (PV) cell. In real-world applications,
individual PV cells are assembled into larger units
known as PV modules. These modules can be
interconnected in series or parallel configurations to
form PV arrays, which are commonly used in solar
power generation systems. In the circuit, the current
source Iphl_{ph}iph symbolizes the photocurrent
generated by the cell. The parameters RshR_{sh}Rsh and
RsR_{s}Rs represent the cell’s inherent shunt and series
resistances, respectively. The equivalent model of a
complete PV array is depicted in Figure 2.
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Figure2. PV cell equivalent circuit
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Figure 3. Equivalent circuit of solar array.

Wind Turbine Modelling

A Wind Turbine Induction Generator (WTIG) system
involves two main energy conversion stages. Initially, the
kinetic energy from the wind is transformed into
mechanical energy, which is subsequently converted into
electrical energy. The internal structure of the wind
turbine system is illustrated in Figure 3. Wind strikes the
rotor blades, causing them to rotate and transfer energy to
the rotor shaft. To achieve the desired high rotational
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speed required by the generator, a gearbox is employed
between the rotor shaft and the generator. The mechanical
power transmitted. through the shaft is then converted
into electrical power by the connected induction
generator.
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Figure. 3 Cross section showing the arrangement of internal
parts of a wind turbine

When wind conditions fluctuate, the resulting power
output under varying conditions is organized in matrix
form for analysis[11]. Ultimately, the electrical energy
generated from the wind turbine system can be
mathematically represented using a cubic equation, as
shown in Equation (4).

In this equation:
e PmP_m represents the mechanical power (W),
e CpC_pisthe power coefficient,
e o\rhois the air density (kg/m?),
o AAisthe swept area of the rotor blades (m?),
¢ A\lambda denotes the tip-speed ratio,
e VVisthe wind speed (m/s), and
e [3\beta is the pitch angle (rad).

This relationship is derived based on aerodynamic
principles, allowing the transfer of power characteristics
from one turbine design to another.

The power available in the wind can be expressed as:

Pw=120AV3P_w = \frac{1}{2} \rho A V"3

The aerodynamic efficiency of a wind turbine is
characterized by the power coefficient Cp(f3,A)C_p(\beta,
\lambda), which reflects the effectiveness of converting
wind energy into mechanical energy. Here, [3\beta refers
to the blade pitch angle, the degree to which the blade is
twisted along its length, while A\lambda is the tip-speed
ratio—defined as the ratio of the rotor's tangential speed
to the incoming wind speed.

The power captured by the turbine rotor can be calculated
using:

Pwt=120ACpV3P_{wt} = \frac{L}{2} \rho A C_p V"3

Alternatively, it can also be expressed in terms of rotor
shaft speed (ws\omega_s) and rotor radius (RR):
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Pwt=T-wsP_{wt} =T \cdot \omega _s
In an idealized scenario with no energy losses and an
infinite number of rotor blades, the theoretical maximum
value for the power coefficient—known as the Betz
limit—is Cpmax=0.593C_{p_{max}} = 0.593.
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Fig. 4 Model representation of a proton exchange
membrane fuel cell.

Fuel Cell Model Equations

A fundamental fuel cell model incorporates the governing
principles of mass conservation, thermal energy,
momentum, species transport, and electric charge balance.
These five core equations collectively describe the
physical and chemical behavior within the cell. The model
integrates these equations through source terms that
account for electrochemical reactions and electro-osmotic
drag occurring in the polymer electrolyte membrane[12].
These interconnected processes are represented in vector
form to capture the complex interactions and dynamics
within the fuel cell system.

Maximum Power Point Tracking (MPPT) Techniques

The efficiency of renewable energy sources such as wind
turbines (WT), photovoltaic (PV) systems, and fuel cells
(FC) can be significantly enhanced through Maximum
Power Point Tracking (MPPT) techniques. These methods
ensure that each energy source operates at its optimum
power point under varying environmental conditions.
Several MPPT strategies are widely adopted, including
P&O, INC, FLC, and NN methods. When the initial
voltage of the PV array or the rotor speed of the wind
turbine deviates from the optimal values, adjustments are
required to bring each system back to its maximum power
operating point.

In this study, MPPT is employed to extract the maximum
possible power from a hybrid energy system composed of
PV, WT, and FC components. This harvested power is
then transferred efficiently to the load using a DC/DC
converter. The converter serves as a power interface
between the source and the load, adjusting the duty cycle
to change the apparent load impedance.

By matching this impedance to the source at its peak

power point, the maximum amount of power can be
delivered. Thus, implementing MPPT techniques is
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essential for ensuring that each module operates at its
peak efficiency [13].

Fuel Cell Mathematical Modeling

The mathematical modeling of a basic fuel cell system
involves five key physical domains: mass transport,
momentum, species concentration, thermal energy, and
electric charge. These equations are interlinked through
source terms that represent electrochemical reactions and
electro-osmotic drag within the polymer electrolyte
membrane (PEM). This coupled system is typically
expressed in vector form using a set of differential
equations.

The continuity equation describes mass conservation
within porous electrodes made of carbon fiber or cloth.
Reactant gases are distributed across the catalyst layer,
and the porosity of the electrode medium is incorporated
into the continuity equation, given by:

0(e0)ot+V-(eoU)=0\frac{\partial (\varepsilon
\rho){\partial t} + \nabla \cdot (\varepsilon \rho
\mathbf{U}) =0

Where:
e V\nabla is the vector differential operator,
e o\rhois the fluid density,
o &\varepsilon is the porosity of the material,
o U\mathbf{U} is the flow velocity vector,
e ttistime.

This forms one of the foundational equations for
modeling PEMFC performance, alongside others
governing momentum and species transport.

Artificial  Neural Networks: Levenberg-Marquardt
Algorithm

The Levenberg-Marquardt (LM) algorithm is a powerful
optimization method frequently used to train artificial
neural networks, especially in regression tasks involving
squared error loss functions. It offers a compromise
between the speed of Newton’s method and the stability
of gradient descent.

The loss function typically used is:
E=Yi=1mei2E = \sum_{i=1}*{m} e_i"2
Where eie_i is the error for the ithi*{th} training example,

and mm is the total number of samples. To optimize this,
the algorithm computes:
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e The Jacobian matrix (J): contains partial
derivatives of the errors with respect to each
parameter.

e The gradient vector (g): obtained as g=JTeg = T
e, where ee is the vector of errors.

e The Hessian approximation (H): estimated as
H=JTJ+AIH = JAT J + \lambda |, where A\lambda
is a damping parameter and Il is the identity
matrix.

The parameter update rule is defined as:

Onew=0—-(JT]+Al)-1]JTe\theta_{new} = \theta - (J"T J +
\lambda N"{-1} AT e

When A\lambda is large, the algorithm behaves like
gradient descent, making small updates. As the error
decreases and convergence improves, A\lambda is
reduced, transitioning the method toward Newton’s
algorithm for faster convergence. If an iteration fails to
reduce the error, A\lambda is increased to restore
stability.

This adaptive behavior allows the Levenberg-Marquardt

algorithm to achieve rapid and robust convergence,
making it well-suited for training neural
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Figure.1l . Workflow Mechanism
3. Results

Simulation Analysis Using MATLAB/Simulink

A simulation study has been conducted using
MATLAB/Simulink to evaluate the performance of a
hybrid renewable energy system in delivering maximum
power to a resistive load. The system was modeled and
analyzed under various conditions to assess its
effectiveness. The simulation results compare the input
power and voltage before the boost converter—without
employing a fuzzy logic controller-based MPPT—with the
output after the boost converter, where MPPT is
implemented using both Fuzzy Logic Controller (FLC)
and Artificial Neural Network (ANN) techniques[14].
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This analysis highlights the improvements in power
extraction and voltage regulation achieved through
intelligent MPPT control strategies.
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Figure 3. Simulated FLC and MPPT
1. Conclusion and Future Scope

This study introduces an advanced MPPT approach
applied to solar PV, wind turbine (WT), and fuel cell
(FC) systems within a hybrid energy configuration. The
proposed method enables precise and rapid tracking of
the maximum power point across varying operating
conditions. To assess the effectiveness of different ANN
architectures, several performance metrics were defined
and evaluated through a series of case studies involving
randomly  generated scenarios. The  findings
demonstrate the method's strong robustness against
variations in PV system parameters. Simulation results
confirm that the MPPT technique significantly enhances
the overall efficiency of the hybrid energy system.

The hybrid setup consistently delivers greater power
output than individual PV, WT, or FC systems across a
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range of load conditions. The proposed solution is
applicable to both standalone and grid-connected
systems. Future work may focus on experimental
validation to identify the most cost-effective hardware
implementations. Additionally, exploring the balance
between investment costs and energy efficiency losses
could provide wvaluable insights for practical
deployment.
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