

An AI Driven Approach To Verify Subjective Answers

**B J Priyanka^{1*} , U Akanksha² , D Bhavya³ , D S Basheerun⁴ ,
K Hemalatha⁵ , S Keerthi⁶**

¹⁻⁵ Department of Artificial Intelligence and Data Science , Aditya College of Engineering , Madanapalle , India

* Corresponding Author: B J Priyanka ; bjpriyanka@gmail.com

Abstract: An program that reviews written responses and assigns grades in a manner akin to that of a human being is known as an AI-Driven Approach to Verify Subjective Answer. The system is made up of built-in artificial intelligence sensors that, much like a human, validate responses and assign points appropriately. The Microsoft.NET Framework is a new computer platform designed for front end development that makes it easier to create applications in the widely dispersed online world.to offer a code-execution environment that ensures code, including code from unidentified or partially trusted third parties, is executed safely. There are two primary parts of the.NET framework :The runtime for Common Language is: The.NET Framework is built on the common language runtime. The runtime might be compared to an agent that oversees.

Keywords: Microsoft .NET Framework , Active Server Pages Network Enable Technologies, GUI ,HTML.

1. Introduction

An AI-Powered Method for Verifying Subjective Answers: An application that examines and grades written responses that resemble human beings'. This software is made to assess the user's subjective answers to an online test and give them points when the answers are verified. The initial response must be stored by the system. This facility is accessible to the administrator. The addition of queries and their arbitrary replies is at the discretion of the system administrator. These answers are kept in notepad files. When taking the exam, a user is provided an area to type his answers and a set of questions to finish. Following entry of the user's response, the system compares it to the initial response entered into the database and assigns points based on the difference. The responses don't have to match word for word. The system is made up of built-in artificial intelligence sensors that, much like a human, validate responses and assign points appropriately. Using a shortcut key, users may quickly and conveniently choose all conventional check boxes or radio buttons on a web page using the Google Chrome extension An AI Driven way to verify subjective replies. This is a lightweight, quick-to-use plugin that only loads a content script into the active page upon clicking the browser action icon.

Conversely, the An AI-Powered A software program called the Approach to Verify Subjective Answers Project

checks and validates user-submitted subjective answers and assigns grades based on the results. In order to assign marks under this system, the user's response must first be compared to the original answer, which must be kept in a database. This system's objective outcomes and automated manual verification process are intended to lighten the examiners' burden. Another tool that helps users test surveys is the Survey Tester Browser Extension, which offers extra features like answer buttons and route diagrams. This add-on is helpful for going over grid questions and finding problems with the survey.

The AI-Powered Method for Confirming Subjective Responses. Another solution that lets users to auto-select all checkboxes or radio buttons on any webpage is the Google Chrome addon. With the Quizlet online study website program, users may quickly search for questions and answers from thousands of different study sets by utilizing the Quizzed browser extension. By decreasing the amount of manual labour required, this website preserves accuracy, boosts productivity, and saves time. Institutions can simply register and administer an exam rather than having to go through the process of developing new software every time. Students can examine their results immediately, saving them time without having to travel far to the center. It is possible to train an AI to imitate an approach for verifying subjective answers. similar to humans is referred to as artificial intelligence, or AI. It involves developing computer

programs and algorithms that can perform tasks that would typically need human intelligence, including as speech recognition, visual perception, decision-making, and language translation. be taught to simulate the verification process of a human response.

This strategy reduces the workload of examiners, saves time and resources, and yields results instantly. The imitation of human intelligence in machines that have been taught to think and behave like people is known as artificial intelligence, or AI. It entails creating computer programs and algorithms that are capable of carrying out operations like speech recognition, visual perception, decision-making, and language translation that ordinarily need human intellect.

Artificial intelligence (AI) has the potential to revolutionize numerous industries and has a wide range of applications, including virtual personal assistants and self-driving cars. Artificial intelligence, or AI, is the emulation of human intelligence in machines built to think and act like people. It comprises developing algorithms and computer applications that

2. Related Works

Online Subjective Answer Verification System Driven by Artificial Intelligence (2021) G. Jagadamba Shree Chaya G. is the author. Organizations and educational institutions are always dependent on the examination-based grading system. Nonetheless, the majority of the tests are impartial. Although they don't integrate subjective questions, these systems—or any other equivalent system—are more advantageous in terms of resource conservation. An attempt was made to evaluate the descriptive reaction in this essay. The evaluation is finished with a graphical comparison with a standard response. Using Natural Language Processing and Machine Learning to Assess Subjective Responses (2021) Hamza Arshad and Abdul Rehman Javed are the authors. Previously, a range of methods were used to assess subjective answers, and their shortcomings were investigated. We offer a fresh approach to solving this issue in this paper:

AI-Powered Subjective Answer Evaluation Instrument (TESA) (2021) Authors: Omkar, Shreya Singh, and Ambar Patwardhan All of the studies that have been looked at show that there are several different ways to evaluate subjective response sheets. The benefit of the system is that it uses a weighted average of the methods that are closest to accuracy to produce the best possible result. The TESA is a rigorous and trustworthy procedure that makes evaluators' jobs easier and yields more efficient and timely results. ASSESS: Semantic learning-based automated assessment of subjective responses Authors: Nidhi Dedhia, Kunal Bohra, and Prem Chandak This automated approach is useful for testing students online for self-

improvement. This system, with its assortment of speech-based usability options, prioritizes the requirements of the benefits of this system include its proximity to completeness, performs better, and serves a sizable audience. Automated Response Verifier Writers: M.L. Sharma, Vasu Bansal, and Krishna Chandra Tripathi Since the suggested method eliminates the need to spend time grading a stack of papers, instructors may find it quite helpful when they need to take a quick exam for review.

3. Experimental Method

After preliminary examination, computerization of the entire process is recommended in light of the abnormalities in the current system.

What is the Online Exam System : The process of learning on the Internet with the help of a subject matter expert or an examination is known as an online examination. The usage of the Internet for exam-related activities is another way to phrase it.

How does it operate: This examination method uses a number of web-based apps to accomplish its objectives. These apps and tools include online whiteboards, instant chat, email, and more.

4. Results and Discussion

This program uses artificial intelligence to verify subjective replies by analyzing and rating written responses that resemble those of a human. This software's purpose is to verify the user's subjective answers to an online test before giving them points. It is necessary for you to save the initial response provided by the system. The administrator has access to this facility. The system administrator may add queries and the corresponding, arbitrary responses. Notepad files are used to store these responses.

Figure.1 Gantt Char

A user is given a space to input his responses and a set of questions to complete when taking the

ISSN: 3107 - 8605 (Online) , <http://www.ijcser.com/> , Vol. 1 , Issue 4 , 2024 , <https://doi.org/10.63328/IJCSER-V1RI4P11>

test. Following entry of the user's response, the system compares it to the initial response entered into the database and assigns points based on the difference. It's not necessary for the responses to be word for word identical. The system is made up of built-in artificial intelligence sensors that, much like a human, validate responses and assign points appropriately.

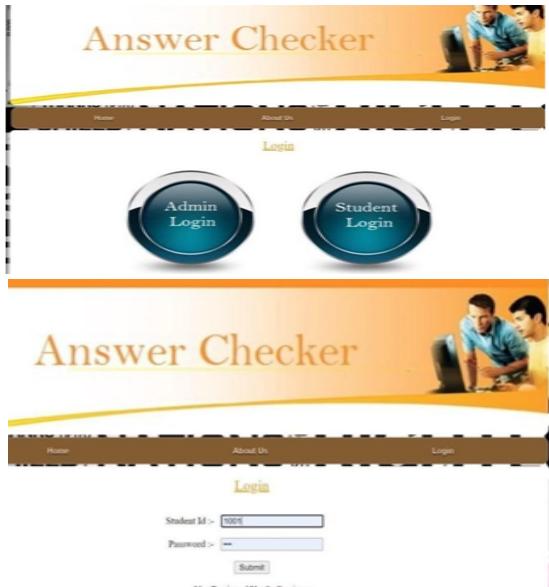


Figure. 2 Student login

Figure. 3 Login Page for Student and Admin

Figure.4 Student Details For Admin Login

Figure.5 Student Registration

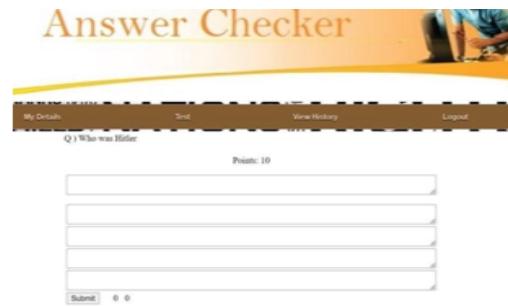


Figure. 6 Student Takes Test

Figure. 7 Entering Answers

localhost:3924 says

0

Figure. 8 Output of the test

5. Conclusion

The project report entitled "AI-Driven Approach to Verify Subjective Answer" has come to its final stage. The system has been carefully designed to ensure that it is error-free, efficient, and requires less time to use. The robustness of the system is what matters. Provision is also made for system developments in the future. Every part of the system is safe. Soon, this online system will be authorized and put into use.

References

- [1]. J. Wang and Y. Dong, "Measurement of text similarity: A survey," Inf., vol. 11, no. 9, p. 421, 2020. [2]M. Han, X. Zhang, X. Yuan, J. Jiang, W. Yun, and C. Gao, "A survey on the techniques, applications, and performance of short text semantic similarity," Concur. Compute. Pract. Exp., vol. 33, no. 5, 2021.
- [2]. M. S. M. Patil and M. S. Patil, "Evaluating student descriptive answers using natural language processing," International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 3, pp. 1716-1718, 2014.
- [3]. P. Patil, S. Patil, V. Miniyar, and A. Bandal, "Subjective answer evaluation

using machine learning," International Journal of Pure and Applied Mathematics, vol. 118, no. 24, pp. 1–13, 2018.

[4]. J.Muangprathub, S. Kajornkasirat, and A. Wanichsombat "Document plagiarism detection using a new concept similarity in formal concept analysis," Journal of Applied Mathematics, vol. 2021, 2021.

[5]. X. Hu and H. Xia, "Automated assessment system for subjective questions based on ls " in 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, pp. 250–254, IEEE, 2010.

[6]. M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, "From word embed-dings to document distances," in international conference on machine learning, pp. 957–966, PMLR, 2015.

[7]. C. Xia, T. He, W. Li, Z. Qin, and Z. Zou, "Similarity analysis of law document's based on word2vec," in 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), pp. 354– 357, IEEE, 2019.

[8]. B. Oral, E. Emekligil, S. Arslan, and G. Eryigit, "Information extraction from text intensive and visually rich banking documents," Inf. Process. Manag., vol. 57, no. 6, p. 102361, 2020.

[9]. H. Khan, M. U. Asghar, M. Z. Asghar, G. Srivastava, P. K. R. Maddi Kunta, and T. R. Gadepalli, "Fake review classification using supervised machine learning," in Pattern Recognition. ICPR.

[10]. International Workshops and Challenges: Virtual Event, January 10–15, 2021, Proceedings, Part IV, pp. 269–288, Springer International Publishing, 2021.

[11]. S. Afzal, M. Asim, A. R. Javed, M. O. Beg, and T. Baker, "Urldeepdetect: A deep learning approach for detecting malicious URLs using semantic vector models," Journal of Network and Systems Management, vol. 29, no. 3, pp. 1–27, 2021.

[12]. N. Mandeni and A. Cahill, "Automated scoring: Beyond natural language processing," in Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018, Santa Fe, New Mexico, USA, August 20–26, 2018 (E. M. Bender, L).

