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Abstract: Magnetic Resonance Imaging (MRI) is a medical imaging technique used to make the diagnosis of a disease, 
Schizophrenia, and Multiple Sclerosis. To address the above issues, a blind IQA metric termed as the Nonreference Quality 
Index for Denoised Images (NQIDI), It is suggested in this paper for evaluating the standard of denoised MR pictures. 
Precise assessment of residue noise and edge sharpness within denoised MR images are required for the calculation of 
NQIDI. Hence, a principal components-based noise estimation model for quantifying the strength of noise in MR images and 
a quantitative IQA metric termed as Objective Measure of Sharpness of Edges (OMSE) that accounts for the perceptual 
sharpness of MR images are also introduced in this thesis. This paper an anonymous IQA measure, the No Reference Quality 
Index for Denoised Pictures (NQIDI), for evaluating the quality of denoised magnetic resonance pictures in order to 
overcome the aforementioned problems. Precise assessment of residual noise and edge sharpness in the denoised MR images 
are required for the calculation of NQIDI. Therefore, this thesis also introduces a quantitative IQA measure called the 
Objective Measure of Sharpness of Edges (OMSE), which accounts for the subjective sharpness of MR images, and a 
principle components-based noise estimation model for measuring the level of noise in MR images. The thesis includes three 
scientific contributions: a no-reference measure for evaluating the quality of denoised MR pictures, an objective metric for 
assessing the sharpness underlying edges in MR images, and a noise model for predicting the statistics and noise in MR 
images. The NQIDI is the algebraic product of two different quality factors, known as the Noise Suppression Factor (NSF) 
and the Edge-Preservation Factor (EPF), or Gradient Singular Value Decomposition (GSVD). The NSF is calculated using the 
standard deviation of latent noise in the picture and the standard dispersion of noise in the input image, whereas the EPF is 
calculated using the sharpness of edges in both the noisy output and denoised images. 
Keywords: CNN, Machine Learning, X-ray image, Gradient Boost Algorithm, Python. 
 

1. Introduction 
 

A medical imaging technique called MRI is used to see 
within the human body's organs[1]. The patient or subject 
is placed beneath a permanent magnet's field during an 
MRI. The human body is made up of water molecules to a 
roughly 80 percent degree. Hydrogen atoms may be found 
in water molecules. The hydrogen atoms' protons process 
at a naturally occurring frequency. As per Ampere’s law, 
moving charge carriers create a magnetic field. Protons 
being positively charged; their natural spin constitutes a 
magnetic field[2]. Likewise, all protons inside the 
hydrogen atoms act as small magnets. When the human 

body is brought under the field of an external magnet, 
protons inside the hydrogen atoms align either parallelly 
or antiparallelly to the direction of the external field. Each 
proton takes an alignment that needs lesser energy 
expenditure. Even after alignment, the protons continue 
their precession[3,4]. Noise is an inadvertent artifact 
encountered in MRI that spoils the visual quality and 
consequently the diagnostic value of MR images. Noise in 
MRI originates from several sources. The noise 
components from several sources superimposed together 
form the perceived noise. The first noise component is  
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formed in the body of the subject undergoing the scanning 
procedure[5]. The source of the first noise component is the 
Brownian movement of ions present in the cellular 
electrolytes. The second noise component is formed in the 
receiver chain. 
 

 
Figure.1: Noisy MR images 

 
2. Research Problem and Motivation  
 
Typically, Shepp-Logan Phantom or simulated magnetic 
resonance pictures are used to compare the performances 
of denoising techniques. The noise-free ground truth will 
be mixed with known volumes of noise, and the resulting 
noisy pictures will be sent as input into the denoising 
algorithms[6]. A perfect denoising method should provide 
a restored picture that is a perfect duplicate of the noise-
free original image. The smoothing and ground-truth 
picture similarity is used to evaluate the denoising 
algorithms' performance[7]. Full-reference pixel 
correspondence measurements like PSNR, MSE, and 
Structural Similarity Index Metric (SSIM) are frequently 
employed to objectively portray the similarity between 
restored and ground-truth photos[8].  
 
The quality of the denoised images is also compared in the 
literature using full-reference measures such as Edge 
Preservation Index (EPI), type-2 Vector Root Mean 
Squared Error (VRMSE), and noise Quality Measure 
(NQM), in addition to MSE, PSNR, and SSIM. Full-
reference pixel correlation measurements include both 
MSE and PSNR. On the other hand, the SSIM assesses the 
degree of similarity between the central tendency and 
grey-level dispersion metrics in two pictures[9,10]. The 
combined quality reduction caused by residual noise and 
edge blur in the recovered pictures is reflected by the 
VRMSE. The EPI measures the degree to which edges in 
the denoised pictures resemble those in the ground truth. 
The degree to which the denoised picture resembles the 
ground truth in terms of residual noise content is 
quantitatively shown by NQM[11]. 
 
 
 

 
 
There is no way to get the silent ground truth while 
denoising actual time magnetic resonance images. Every 
full-reference measure, such as MSE, PSNR, VRMSE, EPI, 
and NQM, needs noise-free ground truth. Hence, they 
cannot be employed for denoising real-time MR images, 
because there isn't any ground truth. The overall quality of 
denoised photographs in terms of edge strength and 
residual noise may be represented by no-reference metrics, 
which are required to evaluate the effectiveness of 
denoising algorithms and the selection of their operating 
parameters[12]. 
 
2.1. Research Objectives  
 
Major Objective: The major objective of the thesis is to 
design a no-reference metric It may serve as a gauge for 
the quality of denoised MR pictures by revealing the 
amount of residual noise and unintentional edge blur. 
 
2.2. Proposed Solution and Methodological Flow 
 
To address the research problems, a blind IQA metric is 
termed the No-reference Quality Index for Denoised 
Images (NQIDI), The computation of NQIDI involves 
precise estimation of the denoised MR images' edges' 
clarity and remaining noise. Hence, a principal 
components-based noise estimation model for quantifying 
the strength of noise in MR images and a quantitative IQA 
as Objective Measure of Sharpness of Edges (OMSE) that 
accounts for the perceptual sharpness of MR images are 
also introduced. 
 

 
Figure 2: Proposed solution 

 
3. Methodology 

 
The NQIDI suggested in this study is derived from 

the smoothed MR image's edge sharpness and residual noise 
power. The input picture is split into "W" blocks, each 
having a size of "w×w"pixels, such that the OMSE may be 
computed by overlapping the adjacent blocks with "d" 
pixels. Two different measurements of sharpness—one from 
the domain of space and another from the spectral domain—
are used to determine the OMSE.When a block's contrast, as 
measured by the percentage of the difference between the 
lowest and highest visible grey level values, or |max(B) - 
min (B)|, is lower than a predefined threshold, or "T," the 
frequency-domain measurement of sharpness, or "Sf(B)," at 
any given block (B) in the image is regarded as 0.  
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Blocks are deemed homogenous if their contrast is smaller 
than the criterion. Blocks with contrast greater than the 
threshold are assumed to have texture. The slope "αB" of the 
Cumulative Magnitude Spectrum (CMS), or "CB(ω)," may 
also be used to calculate "Sf(B)" in the event that the contrast 
of the block is greater than the threshold. 


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‘τ1’ and ‘τ2’ are two arbitrary constants. The CMS, 
‘CB(ω)’,Summing the value of the magnitude the 
spectrum, |YB(ω,θ)| at all introductions, "θ," yields 
the radial frequency, "ω." 
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To indicate the polar coordinates, use '(ω,θ)'. By using 
least square regression to fit the log (ω) and log (CB) to 
the first-degree polynomial, the slope "αB" may be 
determined. 
 
The spatial metric of sharpness, or "Ss(B)," is computed 
by splitting the block "B" into smaller segments of 2x2 
pixels, denoted by "b." the greatest value 
corresponding to the variance variation, V(b), of each 
of the block's constituent sub-blocks, 'b' 'B', normalized 
by an arbitrary constant, 'λ', is called 'Ss(B)'. The 
variation denoted as "V(b)" is the total of the 
normalized values for the six directional gradients, and 
it corresponds to the sub-block "b". 
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The weighted geometric average of "Sf(B)" and 

"Ss(B)" is the combined sharpness measure, or "S(B)" at 
the block "B." 
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The OMSE is the average of several highest 
values found in the raw vector that represents the 
combined sharpness measure arranged 
lexicographically., ‘S(Bi))’, 1≤ i ≤ W, sorted in 
descending order, Threshold of Gradient Modulus 
(TGM) that controls the severity of image smoothing. 

 
 
 
 

 

 
 

 
 

Figure 3:Diagram showing the procedures used to 
compute the OMSE 

 
The experimental procedure for validating OMSE is 
designed following the method adopted [13] for 
performance assessment of image sharpness metrics on 
MR images. The ability of OMSE to reflectthe MR 
images is assessed in terms of Pearson’s correlation 
with SRES. Pearson’s correlation between OMSE and 
SRES is calculated using 
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The terms,  and  respectively indicate the 
mean of OMSE and SRES scores noted from the test 
images generated from a particular baseline MR image. 

The terms,  and  respectively indicate the 
SD values of OMSE and SRES scores noted from the 
test images generated from a particular baseline MR 
image.  
 

4. Experiments and  Results 
 
The experiment makes use of a dataset of 100 MR 
slices. This well-known dataset has already been 
utilized in research to assess the efficacy of denoising 
and picture enhancement methods. The pictures in the 
dataset were collected using a 1.5 Tesla 2D MRI 
scanner manufactured by GE Medical Systems, which 
is available at Hind Labs, Government Hospital 
College Kottayam, Kerala, India. The sequence of 
acquisitions is MR Spectroscopy. The slice thickness 
and inter-slice spacing were adjusted at 6 mm and 1.6 
mm, respectively, during picture acquisition. Images 
from pulse sequences of the T2 Fluid Attenuation is  
 

OMSE SRES

OMSE SRES
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Inversion Recovery (FLAIR), Gradient Recalled Echo 
(GRE), Diffusion-Weighted Imaging (DWI), T1 Fast 
Spin-Echo Contrast-Enhanced (FS - ECE), and 1000b 
Array Spatiotemporal Sensitivity Encoding Technique 
(ASSET) are used. Proposed and state-of-the-art 
augmentation approaches are simulated using 
Matlab® 2020a. On a desktop computer running 
Windows 10, the software is installed with 8 GB of 
RAM. The system is powered by an i3–2100 CPU, 
which has two cores and a total speed of 3.1 GHz. 

. 
Figure 4:An example of a baseline picture is shown in 

(a), (b), (c) 
 
The OMSE is compared against state-of-the-art 
sharpness statistics, namely, QIF, Lu’s Metric, Relative 
Blur, PMISQW, MISE, GSVD, Javaran’s Metric, 
Caviedes’s Metric, NIBMSD, and BISHARP, in terms of 
the correlation with SRES on the dataset produced by 
the AD filter and bilateral filter from the baseline MR 
images. Even though a total of 100 baseline images are 
used for producing the datasets, pictorial results 
corresponding to three baseline images are provided in 
the thesis. However, numerical results are reported for 
all 100 datasets. Three baseline MR images used to 
demonstrate the performance of OMSE are shown in 
Figure 4. 
 

 
Figure 5:Test dataset 3 was created by changing the 

TGM within the AD Filter  
from baseline picture 3. 

 
 
 

 
 
The reason for the moderate slope is that the sharpness 
of the image drops moderately faster when TGM 
increases from 21 to 171. For values of TGM greater 
than 171, the slope of the SRES versus TGM curve 
increases drastically. The curve becomes steeper when 
the TGM is greater than 171. The cause for steep 
descending is that the drop in perceptual sharpness is 
quite fast when the TGM is greater than 171. The 
pattern of SRES is perfectly in agreement with the 
variation in perceptual sharpness assessed during the 
subjective evaluation of the images provided. This is 
because the fall in perceptual sharpness is quite 
gradual for values of the RP below 4.  

 

 
 

Figure.6: Neuron Analysis 
 
The portion of SRES versus RP curve corresponding to 
the RPvalues between 4 and 16 possesses a moderate 
slope. The reason for the moderate slope is that the 
sharpness of the image drops moderately faster when 
RP increases from 4 to 16. For values of RP greater than 
16, the slope of the SRES versus RP curve shoots up 
significantly. The curve appears steeper as the RP is 
greater than 16. The cause for steep descending is that 
the fall in perceptual sharpness is quite fast when the 
RP is greater than 16. The pattern of SRES is perfectly 
in agreement with the variation in perceptual 
sharpness assessed during the subjective evaluation of 
images 
 
Table 1 provides values for Pearson's correlation 
coefficient between several sharpness measurements 
and SRES on the dataset produced by the bilateral 
filter. Bar graph showing the average Pearson's 
correlation coefficient values between 100 datasets 
produced using the bilateral filter and several 
sharpness measurements and SRES.  
 
Among the state-of-the-art image sharpness measures, 
the suggested OMSE has the greatest Pearson's 
correlation coefficient with SRES when compared to 
Relative Blur, , GSVD.A fully linear relationship 
between the OMSE and SRES is shown by high values 
of Pearson's correlation coefficient between the two  
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variables. The bilateral filter is used to build a dataset 
on which the OMSE is discovered to be able to 
represent the perceived sharpness of MR images. 
 
Sharpness 

Metric 
Image_1 Image_2 Image_3 Dataset 

Relative 
Blur 

0.96352 0.9856 0.9845 0.9855 

GSVD 0.9214 0.9874 0.9214 0.9632 
MISE 0.9415 0.9564 0.9524 0.9684 
OMSE 0.9991 0.9899 0.9984 0.9971 

 
Table 1: The bilateral filter was created using Pearson's 

correlation between sharpness 
 measurements and SRES on the dataset. 

 
5. Conclusion 

 
A quantitative IQA metric termed as Objective 

Measure of Sharpness of Edges (OMSE) that accounts 
for the perceptual sharpness of MR images was 
proposed. The OMSE exhibited the highest value of 
Pearson’s correlation coefficient with SRES, compared 
to that shown by other state-of-the-art image sharpness 
metrics like  Relative Blur, MISE, and GSVD. The 
OMSE showed good agreement with subjectively 
quantified sharpness of denoised MR images. It was 
observed that the OMSE could reflect the perceptual 
sharpness of MR images more faithfully than Relative 
Blur,  MISE, and GSVD. Particularly, the OMSE can be 
employed to measure the smoothed MR image's edges' 
sharpness for denoising purposes. 
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